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SUMMARY

Problems related to automatic generation of highly stretched unstructured grids suitable for 3-D Rey-
nolds-averaged Navier–Stokes computations are addressed. Special attention is given to treatment of
such geometrical irregularities as convex and concave ridges as well as corners where the ridges meet.
The existing unstructured grid generation approaches may fail or produce poor quality meshes in such
geometrical regions. The proposed solution is based on special meshing of non-slip body surfaces
resulting in smooth and robust volume meshing and high overall quality of generated grids. Several
examples demonstrate the e�ciency of the method for complex 3-D geometries. Copyright ? 2003
John Wiley & Sons, Ltd.
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INTRODUCTION

Automatic unstructured grid generation for high-Reynolds viscous �ows is one of the remain-
ing CFD bottlenecks. Several solutions of the problem have been proposed recently [1–9].
However the existing approaches may experience reliability and grid quality problems in areas
where the wetted surfaces feature sharp concave=convex ridges or corners.
The existing methods are based on combination of structured or semi-structured grids in

viscous regions (close to the body), and unstructured, usually tetrahedral meshes elsewhere.
The semi-structured meshes can be generated using prismatic mesh generators [1], which
construct the prismatic elements by advancing the original surface triangulation in a direction
normal to the body. The prismatic elements can be subdivided later into tetrahedra [4]. Another
approach constructs the stretched tetrahedra directly using the advancing layers method [5].
In Reference [7] the viscous stretched mesh was generated between the non-slip surface
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Figure 1. Problems associated with prismatic grid generation: (a) corner point where no
prism can be generated; (b) convex ridge, where stretched elements are connected at sharp
angles; (c) concave ridge, where stretched elements are connected at sharp angles and grid

resolution inside the corner is not adequate.

and the Cartesian mesh. A special algorithm was designed to include corners and ridges
into the mesh. Local node insertion with reconnection in viscous regions was proposed in
Reference [8]. Yet another approach uses well-established structured mesh generators near the
body surfaces and merges them via unstructured methodology [9]. Although the last approach
was expected to generate better meshes in vicinity of the non-slip boundaries, it still has all
the drawbacks of the conventional structured mesh generators, namely, user involvement in the
generation process requiring complex user interface and high level of user expertise. The other
existing approaches such as prismatic, advancing layers method, local insertion=reconnection
method, and Cartesian method require less user input but in their original form still su�er
from di�culties in meshing corners and ridges.
The �rst problem with the automatic semi-structured grid generators occurs at corners where

several concave and convex ridges meet. Generation of prisms requires visibility of the newly
created point from all the faces surrounding the original point. For some geometries such a
point might not exist, and therefore the prismatic grid generator fails. An example of such a
corner is given in Figure 1(a).
The second set of problems is associated with convex ridges such as at the trailing edge of

a wing. Regular prismatic grid generators create only one normal direction from each point on
the ridge, which results in extremely poor mesh quality. These meshes typically contain highly
stretched elements connected to each other at sharp angles, see Figure 1(b). The problem can
be treated by the introduction of multiple normal directions at the ridges [6]. Nevertheless,
large discrepancies in neighbouring cell sizes will still occur. As a result, the mesh quality
will be not adequate in the vicinity of the ridge.
Concave ridges such as at wing-fuselage junction (see Figure 1(c)) are also a serious source

of grid generation problems. Even sophisticated elliptic or hyperbolic prismatic grid generators
cannot guarantee adequate meshing there, resulting in meshes that usually lack appropriate
required resolution.
The objective of the present e�ort is to develop an automatic method based on the prismatic

grid generation technique that will generate better meshes close to corners and ridges. The
proposed solution comes from understanding that the conventional isotropic triangulation of
the non-slip body surfaces is not consistent with the topology of the viscous volume mesh. In
fact, a stretched viscous mesh with high-cell aspect ratios is reasonable only for a �at plate or
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near smooth surfaces. In the case of a singularity like a ridge or a corner, the stretched mesh
should not be generated in the same way as for smooth surfaces. We propose to start the
generation process from adequate surface meshing. Once the proper surface grid is generated,
the volume meshing becomes a lot easier and more accurate. The proposed method makes
it possible to mesh complex corner regions by non-stretched isotropic tetrahedra. For convex
ridges the surface mesh clusters to the ridge and provides a high-quality viscous mesh without
adding any extra normals. Clustering of the surface mesh to the concave ridges provides a
consistent volume mesh.

SURFACE GRID GENERATION ALGORITHM

Surface mesh generation is one of the key elements of the proposed grid generation method.
The surface meshing is designed to make the volume mesh generation more reliable as well
as to improve the overall grid quality.
First, consider viscous mesh generation in the vicinity of corners. The most straightforward

way here is to generate isotropic tetrahedral mesh at the corner, which will be gradually
transferred to the stretched mesh away from the corner. This approach not only enhances
robustness but also improves the mesh quality since stretched elements near the corner result
in inaccurate �ow�eld predictions and stalling of convergence. Isotropic tetrahedra generation
starting from the conventional surface triangulation leads to very large tetrahedra, which are
not acceptable for viscous solution. Thus, the only reasonable solution is to re�ne the surface
mesh at the corners so that triangles sharing the corner would be as small as the required
thickness of the near-wall layer of stretched cells.
Next, consider concave and convex ridges of the body surface. The stretched meshing near

such ridges is usually of no concern when robustness is considered. However, it leads to lack
of accuracy and poor convergence of the solver. To remedy this problem we will apply the
similar approach, namely cluster the surface mesh to the ridges. The only di�erence from the
corner treatment is that for ridges we will generate stretched surface elements. This technique
is applicable for both concave and convex ridges.
Our surface generation technique is based on a CAD surface model. We can treat Coon’s

and trimmed NURBS surfaces as patches for the surface grid generator.
There are two important parameters characterizing the viscous mesh generation, namely the

thickness of the near-wall layer of cells �min, and the factor q, which determines thickness
increase from one layer to the next. The thickness of the grid cells increases in geometrical
progression away from the wetted surfaces. As the �rst step in the grid generation process,
all the sharp ridges of the wetted surfaces are identi�ed and marked by measuring angles
between the adjacent surfaces. Corner points are identi�ed as points where more than two
ridges meet.
The next step is the meshing of the trimmed CAD curves. If a curve starts or ends with

a corner point, its discretization should be clustered to the corner point using the same geo-
metrical progression law as will be used later in semi-structured grid generator. Thus, points
next to the corner will be placed at the distance �min apart from the corner. Curves, which
are not identi�ed as ridges, but are connected to ridges, are discretized in the similar way,
namely, clustered to the points of their intersection with the ridges.
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Figure 2. Surface meshing: (a) semi-structured surface mesh; (b) semi-structured and unstructured
surface mesh; (c) assembly of the surface mesh.

Next, the surface patches are meshed. All ridges are used as an initial front for the normal
point placement. Normals are computed at the ridges, and smoothing operations are performed
on the normals. The smoothing is not performed for the corners so that the weight of the
corner normals in the smoothing procedure is zero. This smoothing results in a structured-like
mesh at concave corners, and in an isotropic triangular mesh at convex corners. Next, the
layers of stretched rectangular mesh are generated along the normals starting from the ridges.
The �rst layer of surface cells will have thickness �min, each subsequent layer being q times
thicker than the previous one. Smoothing is performed for each layer. The advancement from
a side stops if front overlapping occurs, if the cell size in normal direction exceeds its size in
lateral direction, or if the thickness of the layer exceeds the local isotropic mesh size, which
is prescribed by the background mesh. The resulting semi-structured mesh is shown for an
example in Figure 2(a). As the viscous layers are generated, the regular triangular mesh is
constructed in the rest of the surface domain. The sources are automatically placed into the
corners so that the isotropic mesh at corners is clustered toward the source with the same
geometric progression as the stretched grid is clustered towards the wetted surface. Examples
of resulting surface meshes are shown in Figures 2(b) and 2(c). One can observe a smooth
transition between the isotropic and stretched mesh at the corners. The isotropic advancing
front triangulator meshes properly the gaps between the semi-structured layers. Figure 3 shows
a close-up of the area with a problematic corner point. Since the vicinity of the corner point
is meshed with isotropic triangles, generation of a volume mesh at this region should not pose
a problem.
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Figure 3. Surface meshing. Mesh at corners and ridges.

VOLUME GRID GENERATION ALGORITHM

After completion of the surface mesh, a semi-structured volume mesh is then generated, us-
ing a similar procedure. The normals at surface grid points are computed, and smoothing is
applied to the normals. Smoothing is not applied at corners and concave ridges. In contrast,
the normals at convex ridges are smoothed. For smooth surface regions, the standard semi-
structured grid generation procedure [3] is employed. The edges of the surface triangulation
are marked in such a way that all generated prisms can be subdivided into proper tetrahedra,
in this way avoiding so-called Sch�onardt polyhedra. The semi-structured grid is not gener-
ated for corner points and concave ridges, since the isotropic tetrahedral grid generator is
supposed to take care of these regions. Figure 4 shows the in�ated surface after the semi-
structured layers are generated. No mesh was generated in the vicinity of the corner points,
but since the surface mesh was clustered to the corners, the exposed surface is composed of
the isotropic triangles, which can serve as a good initial front for the isotropic tetrahedral
generator.
The isotropic tetrahedra are generated using the advancing front method [10]. The volume

mesh generator uses the sources, which were automatically de�ned at corner points, and some
additional sources that are added at concave ridges. The sources at the corners are responsible
for proper clustering toward the corners using the same geometrical progression law as for the
stretched mesh generation. The ridge sources are automatically added to the concave ridges
and contain stretching along the ridge’s direction. These sources are designed to properly
mesh narrow gaps between the viscous layers, which may occur in vicinity of the concave
ridges. Some slices of the volume mesh, which corresponds to the surface mesh shown in
Figure 3 are shown in Figure 5. The slice shown in Figure 5(a) is taken across the convex
ridge, while the slice shown in Figure 5(c) is taken near the corner. Di�erent shadings are
used here to distinguish the cells obtained using the semi-structured grid generator from the
cells generated by the isotropic tetrahedral grid generator. Figure 6 shows an internal mesh
generated for the same geometry. Figure 6(a) shows a slice of the mesh taken near the corner.
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Figure 4. Volume meshing. In�ated surface of semi-structured mesh.

(a) (b)

(c)

Figure 5. Volume mesh generation: (a) slice of external mesh; (b) slice of external mesh and part of
surface mesh; (c) slice of external mesh near corner with close-up of the corner area.
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(a) (b)

(c) (d)

Figure 6. Volume mesh generation. Slices of internal mesh.

The slice shown in Figure 6(d) is taken across the concave ridge. One can readily observe the
uniform resolution of all corners and ridges. It is important to note that while corner points
are meshed using the isotropic tetrahedra, their size matches the thickness of stretched mesh
layer for the given distance from the wall. This results in very smooth transition between the
structured and unstructured grids, even for very complex geometries.

PARALLEL IMPLEMENTATION

The grid generation method was parallelized for cache-based shared memory computers. The
parallelization method originally developed for advancing front unstructured mesh generators,
described in Reference [10] was used.

EXAMPLES

ONERA M6

Mesh past an ONERA M6 wing has been generated using the proposed method. The mesh
contains 4 744 776 tetrahedra. Figure 7(a) shows the in�ated surface mesh in the vicinity of the
trailing edge tip. The trailing edge tip was marked as a corner, so the in�ated surface was not
generated in the area. The visualization cut was made across the wing, so that the mesh around
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(a)

(c)

(d)

(b)

Figure 7. Mesh for ONERA M6 wing: (a) in�ated surface at tip of trailing edge with close-up;
(b) in�ated surface and slice of tetrahedral mesh; (c) surface mesh and slice of tetrahedral mesh;

(d) section of wing with trailing edge close-up.

the trailing edge can be seen. Figure 7(b) shows the in�ated surface together with a cut of the
volume mesh. Figure 7(c) shows a cut of the mesh and the wing surface mesh. Figure 7(d)
shows a cut across the wing with a close-up at the trailing edge region. Even though we do
not construct multiple normals at the trailing edge, the mesh is smooth in this region because
of surface mesh clustering toward the trailing edge. The mesh provides very accurate transition
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Figure 8. ONERA M6 wing, M =0:84, angle of attack 3:06◦, Re=11:72× 106: (a) pressure contours
and (b) Cp pro�le at 44% semi-span.

Figure 9. Wing=pylon=�nned store con�guration: (a) surface mesh fragments; (b) cut across the store
with close-up of store=�n junction and (c) computed pressure contours.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:717–728



726 D. SHAROV ET AL.

(a) (b)

(c)

(f)

(d)

(e)

Figure 10. Generic racecar: Surface mesh, details of the surface mesh and planar cuts.
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from the upper to the lower part of the wing in terms of the mesh size. The �ow�eld was
computed with a Mach number M =0:8395, Reynolds number Re=11:72× 106, and an angle
of attack of 3:06◦. The Spallart-Allmaras turbulence model was used here. The solution was
obtained using the containment dual �nite volume upwind method with GMRES+LU-SGS
[11, 12] implicit time integration. The pressure contours along the wing surface are shown
in Figure 8(a). The Cp plot at the 44% section of the wing is shown in Figure 8(b). The
result is in good agreement with experimental data. This result has been compared with results
from another unstructured grid computation, conducted using an old grid generation approach
(without the surface grid clustering to the ridges). The new mesh yields a much better solution
in the vicinity of the trailing edge while the old mesh yields a non-physical solution with a
huge Cp jump at the trailing edge.

Eglin test case

A wing=pylon=�nned store con�guration (the Eglin test case) is the next example. The ge-
ometry consists of a clipped delta wing, 45◦ sweep, composed of a constant NACA-64010
symmetric airfoil section. The wing has a root chord of 16 in, a semi-span of 13 in, and a
taper ratio of 0.134. The pylon is located at the mid-span station. The width of the pylon
is 0:294 in. A constant NACA-0008 airfoil section with a leading-edge sweep of 45◦ and a
truncated tip de�nes the four �ns of the store. The surface triangulation is shown in Fig-
ure 9(a). The volume mesh consists of 6 719 666 tetrahedra. A cut across the store is shown
in Figure 9(b). The �ow solutions presented for Mach number of 0.95 and an angle of attack
of 0◦. Figure 9(c) shows the pressure contours on the wing=store surface.

Racecar

A mesh for a generic Indy-type racecar geometry is shown in Figure 10. The overall sur-
face mesh is shown in Figure 10(a). Figures 10(b) and 10(c) focus on particular regions
of the mesh (pilot compartment and air intake). Slices of the volume mesh across the car’s
spoiler and pilot compartment are shown in Figures 10(d)–10(f). The mesh contains 6 074 832
tetrahedra.
It should be noticed that even though the mesh clustering at corners and ridges results in

larger size of mesh, the robustness and mesh quality gains are much more important even if
we have to pay by doubling the mesh size.

CONCLUSIONS

A method for automatic generation of Navier–Stokes meshes is proposed. The method is
designed to avoid pitfalls associated with poor mesh quality or failures in the vicinity of
sharp ridges and corners. The proposed solution is based on surface mesh clustering to-
ward the corners. The examples presented demonstrate the e�ciency of the proposed tech-
nique for very complex geometries. The resulting meshes yield more accurate Navier–Stokes
solutions.
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